REPUBLIQUE DU CAMEROUN

Paix - Travail - Patrie

MINESEC/OBC

PROBATOIRE F Session 201**g** Spécialité: F3 Durée : 04H

Durée : 04H Coef : 04

Epreuve écrite d'admissibilité

CIRCUITS ELECTRONIQUES, INDUSTRIELS ET NUMERIQUES

Documents autorisés : aucun

Nombre de pages : 04 Nombre de parties : 03 Epreuve notée sur: 40

I TECHNOLOGIE

(8 points)

- Un résistor porte les indications suivantes : 150KΩ, 1/4W, 10%. Donner la signification de chaque indication. Ce résistor est remplacé par une résistance au carbone équivalente. En déduire le code de couleur correspondant. (2pts)
- Représenter le symbole d'une diode à jonction, d'une diode électroluminescente et d'une photodiode. (1,5pt)
- 3. A l'aide d'un ohmmètre, préciser l'état des polarités d'une diode à jonction :
 - a) lorsqu'elle est fonctionnelle;

(0,25pt)

b) lorsqu'elle est défectueuse.

(0,25pt)

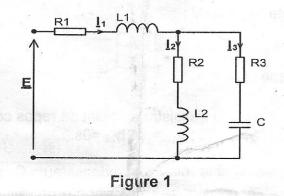
4. Un document technique donne les caractéristiques suivantes d'un composant électronique :

Туре	I _{ZM} (mA)	V _{ZT} (V)	I _{ZT} (mA))	P (W)
BZX 85 C 5V1	200	5,1	45	1,3

a) identifier ce composant;

(0,5pt) (1,5pt)

- b) définir les indications suivantes : BZX 85 C 5V1; I_{ZM}; P ;
- c) dessiner le symbole de ce composant et donner un dómaine d'application. (0,5pt)
- 5. Donner deux avantages et deux inconvénients de la technologie CMOS par rapport à la technologie TTL. (1pt)
- 6. Un compteur binaire modulo 8 a comme état initial 000 ; Quel sera son contenu après 21 impulsions ? (0,5pt)

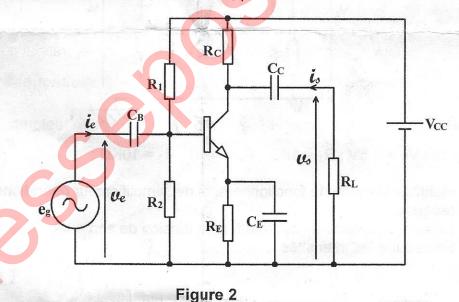

CIRCUITS ANALOGIQUES

(18 points)

2.1 Courant Alternatif

(6 points)

On considère le circuit de la figure1 ci-dessous :



On donne : R1 = R2= R3 = 4Ω ; C = 39.8μ F ; L1 = 1.274mH ; L2 = 0.637mH ; f=1KHz.

- 2.1.1 Déterminer les impédances complexes de chacune des 3 branches du circuit.
- 2.1.2 Déterminer l'impédance complexe équivalente du circuit. (1,5pt)
- 2.1.3 Déterminer l'intensité complexe \underline{l}_2 dans la résistance R2 sachant que l'intensité complexe dans R1 est $\underline{l}_1 = 1,25 \angle 0^{\circ} A$. (1,5pt)
- 2.1.4 Déterminer la tension complexe \underline{E} . (1,5pt)

2.2 Transistor bipolaire en régime statique et dynamique (8 points)

Dans le montage amplificateur de la figure 2 ci-dessous, On donne : $R_1 = 3.9 \text{K}\Omega$; $R_2 = 2.2 \text{K}\Omega$; $R_C = 180\Omega$; $R_E = 390\Omega$; $R_L = 500\Omega$; $R_L = 500\Omega$; $R_L = 500\Omega$; $R_L = 1500\Omega$

A - Etude statique

Le point de repos du transistor est défini par V_{BE0} = 0,7V; I_{B0} = 132 μ A.

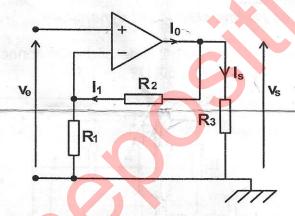
- 2.2.1. Calculer le courant collecteur I_{C0}. (1pt)
- 2.2.2. En utilisant le théorème de Thévenin, déterminer les éléments (R_B et E_B) du générateur de Thévenin équivalent au circuit de polarisation à la base du transistor. (2pts)
- 2.2.3. En déduire la tension d'alimentation V_{CC}. (1pt)

(1,5pt)

Dans la suite on adopte $V_{CC} = 24V$: 2.2.4. Calculer V_{CE0} .

(1pt)

B - Régime dynamique


Les paramètres dynamiques du transistor au point de repos considéré ont pour valeurs : $r = h_{11} = 1K\Omega$; $h_{21} = 150$; $h_{12} = 0$; $h_{22} = 0s$.

- 2.2.5. Donner la désignation et le rôle des condensateurs C_B et C_E. (1pt)
- 2.2.6. Donner le schéma équivalent en petits signaux du montage. (1,5pt)
- 2.2.7. Identifier la configuration (Emetteur Commun, Collecteur Commun ou Base Commune) de ce montage amplificateur à transistor bipolaire. (0,5pt)

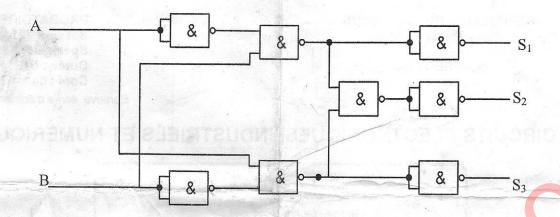
2.3 Amplificateur opérationnel

(4 points)

On considère le montage ci-dessous dans lequel l'amplificateur opérationnel est supposé parfait :

On donne : Ve = 0,5V ; $R_1 = 1K\Omega$; $R_2 = 4K\Omega$; $R_3 = 10K\Omega$;

- 2.3.1 Identifier le mode de fonctionnement de l'amplificateur opérationnel. Justifier la réponse. (1pt)
- 2.3.2 Calculer l'intensité du courant I₁ et la tension de sortie Vs. (1,5pt)
- 2.3.3 En déduire les intensités ls et l_{0.} (1,5pt)


III CIRCUITS NUMERIQUES

(14 points)

3.1Logique combinatoire

(6,5 points)

Le schéma suivant est celui d'un circuit comparateur logique :

3.1.1 Donner les équations des sorties S₁; S₂ et S₃.

(1,5pt)

3.1.2 Simplifier ces équations et mettre S₂ sous la forme d'une somme de produit.

(2pts)

3.1.3 Compléter la table de vérité ci-contre :

(1,5 pt)

	A	В	S_1	S_2	S_3
240	0	0			
N STORY	0	1			
	1	0			
	1	1			

3.1.4 Déduire la fonction des différentes sorties S1, S2 et S3.

(1,5 pt)

3.2 Logique Séquentielle

(7,5 points)

On réalise un compteur à l'aide de 2 bascules J-K actives sur front montant. La séquence de comptage de ce compteur est donnée ci-dessous :

	Nombre Décimal	Q ₁	Q ₀
-	0	0	0
	1	0	1
	2	1	0
)	3	1	1

 Q_1 et Q_0 sont les sorties respectives des bascules (J_1-K_1) et (J_0-K_0) .

- 3.2.1 Dresser la table de vérité et la table de transition de la bascule JK. (1,5pt)
- 3.2.2 En déduire la table de transition de ce compteur.
- 3.2.3 Ecrire les équations des entrées de chaque bascule. (3pts)
- 3.2.4 Donner le schéma structurel du compteur. (2pts)