BAC 2016

SÉRIE: STG

Exercice 1 ______ [5 points]

Le plan complexe est muni d'un repère orthonormé $(O; \overrightarrow{u}, \overrightarrow{v})$.

1°/ Résoudre dans l'ensemble des nombres complexes l'équation $Z^2 - 6Z + 18 = 0$. Place dans le plan complexe les points B et C dont les affixes sont les solutions de cet équation, B étant le point dont l'affixe a une partie imaginaire négative. (1,5pt)

2°/ Montre que C est l'image de B par la rotation de centre O et d'angle $\frac{\pi}{2}$ (1,5pt)

3°/ Soit A le point d'affixe $Z_A = 3(1-\sqrt{3})$, calcule un argument du nombre complexe

$$Z = \frac{Z_C - Z_A}{Z_B - Z_A}$$
. En déduis la nature du triangle *ABC*, puis construis le point *A*. (2pts)

Exercice 2 [5 points]

 1° / Soient f et g les fonctions numériques définies sur IR par

$$f(x) = \frac{x}{1+x^2}$$
 et $g(x) = \frac{x^3}{1+x^2}$:

a-/ Calcule
$$\mathbf{I_1} = \int_0^1 f(x)dx$$
 (1pt)

b-/ Soit
$$\mathbf{I}_2 = \int_0^1 g(x) dx$$
. Calcule $\mathbf{I}_1 + \mathbf{I}_2$ et en déduis la valeur de \mathbf{I}_2 . (1,5pt)

2°/ a_/ Détermine trois réels a, b et c tels que pour tout x différent de $\frac{1}{2}$,

$$\frac{x^2 - 1}{2x - 1} = ax + b + \frac{c}{2x - 1}.$$
 (1pt)

b-/ Calcule
$$\int_{-1}^{0} \frac{x^2 - 1}{2x - 1} dx$$
 (1,5pt)

TVP

Exercice 3 [10 points]

Soit la fonction numérique f définie sur l'intervalle]1; $+\infty$ [par

 $f(x) = x + 1 + 2[\ln x - \ln(x - 1)]$. On note (\mathscr{C}) sa courbe représentative dans le plan muni d'un repère orthonormé (O; \overrightarrow{i} , \overrightarrow{j}).

1°/ Montre que pour tout
$$x \in]1; +\infty [, f(x) = x + 1 + 2\ln \frac{x}{x-1}]$$
. (1,5pt)

- 2° / Détermine les limites de f aux bornes de son ensemble de définition. (1,5pt)
- 3° / Etudie le sens de variation de f et dresse son tableau de variation. (2,5pts)
- **4°**/ Montre que la droite (Δ) d'équation y = x + 1 est une asymptote oblique à la courbe (\mathscr{C}). Précise la position de (\mathscr{C}) par rapport à (Δ). (2pts)
- 5°/ Trace avec soin (\mathscr{C}) et (Δ). (2,5pts)